Researchers Develop Algorithm to 3D Print Vibrational Sounds (Video)

What if we could ease the design of musical instruments while also making their shapes wildly different, and use these underlying techniques to reduce unwanted sounds and vibrations in everyday objects?

In creating what looks to be a simple musical instrument — a glockenspiel with keys shaped like zoo animals — computer scientists at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS), Columbia Engineering, Disney Research, and MIT have demonstrated that they can control the sound of an object by altering its shape through computational design.

The team created an computational optimization algorithm and used digital fabrication to control acoustic properties — both sound and vibration — by altering the shape of 2D and 3D-printed objects. Their work — “Computational Design of Metallophone Contact Sounds” — will be presented at SIGGRAPH Asia on November 4 in Kobe, Japan.

“Our optimization algorithm enabled us to have precise control over the sound of an object by tuning the shape of the object computationally,” said Gaurav Bharaj, first author and graduate student at SEAS. “Through our method, we have gained control over the spectrum of frequencies and their amplitudes.”

Read more

Source: seas.harvard.edu

Leave a Reply

Your email address will not be published. Required fields are marked *